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Gene circuits are dynamical systems that regulate cellular 
behaviors, often using protein signals as inputs and outputs. 
here we have developed an optogenetic ‘function generator’ 
method for programming tailor-made gene expression signals in 
live bacterial cells. We designed precomputed light sequences  
based on experimentally calibrated mathematical models 
of light-switchable two-component systems and used them 
to drive intracellular protein levels to match user-defined 
reference time courses. We used this approach to generate 
accelerated and linearized dynamics, sinusoidal oscillations 
with desired amplitudes and periods, and a complex waveform, 
all with unprecedented accuracy and precision. We also 
combined the function generator with a dual fluorescent 
protein reporter system, analogous to a dual-channel 
oscilloscope, to reveal that a synthetic repressible promoter 
linearly transforms repressor signals with an approximate 
7-min delay. our approach will enable a new generation of 
dynamical analyses of synthetic and natural gene circuits, 
providing an essential step toward the predictive design and 
rigorous understanding of biological systems.

To characterize the signal processing properties of a circuit, 
one must measure how it transforms a wide range of dynamical 
inputs into outputs. Recently, gene circuits have been dynami-
cally characterized by using microfluidic devices to create step 
changes and waveforms of extracellular effector molecules 
while simultaneously monitoring intracellular responses1–6. 
There are two fundamental limitations to this approach. First, 
in the absence of a transmembrane receptor, chemicals must 
diffuse or be transported across cellular membranes before 
affecting the circuit under study. Transport processes intro-
duce unknown delays, which confound circuit analysis, and 
low-pass filtering, which slows the timescale over which a sig-
nal can change1,5. Second, using chemical approaches, one can 
analyze gene circuits only with convenient effectors such as 
sugars or osmolytes. Alternatively, an optical method for creat-
ing on-demand protein signals in live cells would bypass these 
limitations and, in principle, enable the dynamical characteri-
zation of virtually any gene circuit that responds to changes in  
protein concentration.
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Recently, in silico feedback control has been used to set and hold 
a desired protein expression level7 and create basic expression 
dynamics8 in Saccharomyces cerevisiae. In these studies, light- and 
sorbitol-responsive promoters were used to control expression of 
a fluorescent reporter protein, which was measured by flow cyto-
metry or fluorescence microscopy. Experimental characterization 
data were collected to calibrate mathematical models, which were 
in turn used to design a series of input pulses to drive protein 
expression to follow desired reference signals. The experimental 
data were observed to deviate substantially from the model pre-
dictions, and a feedback controller was used to improve the fidel-
ity of in vivo control. Nonetheless, the accuracy and degree of gene 
expression programmability of these methods remains limited7,8. 
We hypothesized that the combination of continuously applied 
analog light inputs and rapidly photoreversible promoters would 
permit the development of quantitatively predictive mathematical 
models, which would in turn enable more reliable programming 
and more complex gene expression signals.

Previously, we engineered two Escherichia coli two-component 
systems (TCSs) wherein transcription from an output promoter 
is controlled by different activating and inhibitory light wave-
lengths9,10 (Fig. 1a,b, Online Methods and Supplementary 
Fig. 1). Each TCS comprises a light-switchable sensor histidine 
kinase (SK) containing an N-terminal phytochrome-family 
photosensory domain and a C-terminal bifunctional kinase-
phosphatase signaling domain. In the first TCS (hereafter ‘CcaS-
CcaR’), the SK CcaS is produced in a green-absorbing ground 
state, termed Pg. Absorption of green light flips CcaS to a kinase-
active red-absorbing state (Pr) that phosphorylates the response 
regulator CcaR, which then binds to the cpcG2 promoter and 
activates transcription (Fig. 1a). Absorption of red light switches 
CcaS Pr back to Pg, which dephosphorylates phospho-CcaR, 
deactivating transcription (Fig. 1a). In the second TCS (hereafter 
‘Cph8-OmpR’), the SK Cph8 is produced in a kinase-active Pr 
state that phosphorylates the response regulator OmpR, activat-
ing transcription from the ompC promoter (Fig. 1b). Red light 
switches Cph8 Pr to a far red–absorbing state (Pfr), which dephos-
phorylates phospho-OmpR, deactivating transcription (Fig. 1b). 
In this study, we systematically characterized the steady state and 
dynamical properties of these light sensors in response to analog 
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light intensities and developed a predictive mathematical model 
that we used to program custom gene expression dynamics.  
We then applied this approach to control the expression dynam-
ics of the transcriptional repressor TetR and incorporated two 
fluorescent protein probes to characterize the input-output signal 
processing properties of a widely used TetR-repressible promoter 
(PLtetO-1; ref. 11) in live E. coli cells.

results
light tube array design and gene expression analysis
To control gene expression dynamics with light, we designed and 
constructed the light tube array (LTA), an instrument that contains 
independently programmable blue, green, red and far-red LEDs 
(Fig. 1c) that deliver calibrated intensities of each wavelength to 
each of 64 standard test tubes (Fig. 1d and Supplementary Figs. 2 
and 3). Housed in a shaking incubator, the LTA allows optical sig-
nals to be sent into batch cultures undergoing exponential growth. 
We characterized expression from each of the two light-sensor 
output promoters using superfolder GFP12 (sfGFP) (Fig. 1a,b). 
Bacteria were grown in the LTA under a constant or dynamical 
(Fig. 1e) light signal (Online Methods and Supplementary Note 1).  
At the end of the experiment, bacteria were harvested and placed 
in a transcriptional inhibitor solution, and sfGFP maturation was 
allowed to go to completion before measurement by flow cyto-
metry (Supplementary Note 2).

characterization and modeling of light sensors
We first used the LTA to characterize the relationship between 
light input and protein expression output for both sensors  
(i.e., their steady-state transfer functions). Our measurements 
revealed that expression from CcaS-CcaR increases with green 
light intensity up to the LTA maximum of 4.03 W/m2 (Fig. 2a) 
with a response that is fit well by a Hill function (Hill coefficient 
n = 2.8 ± 0.4; values are ± the standard error of the fit) containing 

an additional linear term (Supplementary Fig. 4). Measurements 
also revealed that red light competitively inhibits activation by 
green light (Supplementary Fig. 5). This feature allowed us to 
reduce the sensitivity of CcaS-CcaR to green light (half-maximal 
response, k, was raised from 0.010 W/m2 to 0.13 W/m2) while 
preserving the full output range (Fig. 2a and Supplementary  
Note 3). The Cph8-OmpR transfer function differs from that of 
CcaS-CcaR in several ways. First, gene expression output decreases 
with the intensity of red light in a manner described by a standard 
Hill function (n = 1.4 ± 0.1; Fig. 2b and Supplementary Fig. 6). 
Additionally, far-red light has a minimal competitive effect, likely 
owing to rapid dark reversion of Cph8 from the Pfr to Pr state 
(Fig. 1e and Supplementary Fig. 7). Thus, the CcaS-CcaR system 
is a green:red light–ratio sensor, and the Cph8-OmpR system is a 
red light–intensity sensor.

We next applied step increases and decreases of the control 
signal (green or red intensity, respectively) to cultures precondi-
tioned to low, intermediate and high light sensor expression levels. 
The resulting sfGFP time courses (Fig. 2c,d and Supplementary  
Figs. 8 and 9) revealed three timescales underlying response 
dynamics. The dominant timescale arises from sfGFP dilution 
during cell growth and division, an expected result for a stable 
protein13. In addition, we observed a gene expression switching 
time, during which the sfGFP production rate transitions from 
the initial to final level. For step increases in gene expression from 
CcaS-CcaR, the switching time depends on the final green inten-
sity, requiring 1–28 min for the production rate to transition to 
50% of its final value (Fig. 2c and Supplementary Fig. 8). In con-
trast, the production rate of Cph8-OmpR has a constant switching 
timescale of 4 min for step increases in expression, regardless of 
the final red intensity (Supplementary Fig. 9). For step decreases 
in gene expression, the production rate from CcaS-CcaR switches 
halfway in 10 min, whereas Cph8-OmpR switches as quickly as  
4 min in a manner dependent on the final red intensity (Fig. 2d 
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Figure 1 | Light-switchable two-component systems (TCSs) and light tube array (LTA). (a) Expression of sfGFP from the green-activated (λmax = 535 nm),  
red-deactivated (λmax = 670 nm) CcaS-CcaR two-component system is controlled by modulating the intensity of a green LED (λmax = 520 nm) while a 
red LED (λmax = 650 nm) is maintained at high intensity. (b) Expression from the dark-activated, red-deactivated (λmax = 650 nm) Cph8-OmpR TCS is 
controlled by the intensity of the red LED. (c) Schematic of the LTA. An array of individually controlled LEDs is used to deliver programmed light inputs 
to exponentially growing bacterial cultures in a shaking incubator. (d) Each culture tube is optically isolated with opaque foam. (e) Cells preconditioned 
into the low-expression state were grown in the LTA and exposed to a series of 180-min light inputs (green, 4.05 W/m2 emission from green LED; red, 
1.05 W/m2 from red LED; gray, LEDs off). Data points represent population means of single-cell fluorescence distributions (N = 2,000–5,000 cells) 
collected by flow cytometry.
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and Supplementary Fig. 8). Finally, the third timescale observed 
in CcaS-CcaR, but not Cph8-OmpR, is an approximate 5-min 
delay before the sfGFP production rate begins to shift in response 
to a change in light input (Supplementary Fig. 8).

On the basis of these step-response data, we developed a two-
dimensional ordinary differential equation model of the dynamics 
of the light sensors. The model incorporates two dynamic variables 
and three parameters describing the three observed timescales. 

Figure 2 | Experimentally characterized TCS 
models predict input-output dynamics.  
(a,b) Steady-state protein expression from the 
CcaS-CcaR (a) and Cph8-OmpR (b) systems with 
increasing intensity of input light. Red light 
was held at 1.05 W/m2 for the CcaS-CcaR system 
for all experiments. The mathematical model 
(gray) is shown as the interquartile range of  
N = 500 simulations produced by sampling the 
measured parameter uncertainties. Insets show 
the full intensity range available using the LTA. 
(c,d) TCS responses to step increases of the 
control wavelength from 0 to the intensities 
shown. The kinetic model is parameterized via a 
least-squares fit of the sfGFP fluorescence (solid) 
and production rate (dash) variables, with the 
switching time of production rate indicated 
(τ1/2). (e,f) Model validation comparing 
predicted response (gray) to a series of step 
changes in light input with experimental data. The input light signal (dotted) is shown converted to fluorescence units using the steady-state response of 
the system as measured in a,b. Markers and error bars represent the mean and s.d. of experiments on three separate days. Simulated region is determined as 
in a,b. r.m.s. errors (RMSESIM) compare predictions and experiments for each day and are expressed as a percentage of the full output range of each system.
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Figure 3 | Programming protein transition dynamics with a biological function generator. (a) A desired protein reference signal is used as the input  
to the algorithm that generates the light program (top row). Left, the reference signal transitions discontinuously from a low expression output  
(solid circle) to a high expression level (open circle, black line) at time t = 0. Right, the reference signal transitions linearly from low to high.  
These reference signals are used to compute programmed sequences of step changes in light intensity that minimize the square error between the 
predicted and reference protein expression signal (center row). The light programs are depicted as in Figure 2. Experimental protein-expression response 
of the CcaS-CcaR system (green dots) to the precomputed light sequence is shown alongside basic step input–driven transitions (black dots) (bottom 
row). (b–e) Accelerated (b,c) and linearized (d,e) transitions are shown with reference signals and predicted trajectories. R2 values were calculated by 
comparing data to the linear reference signal. Error bars and simulations are as in Figure 2. Fluor., fluorescence.
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The two variables are the sfGFP produc-
tion rate, p(t), and the sfGFP abundance, 
g(t). The parameters include a short delay 
in response to the control signal (τdelay), a 
light intensity–dependent rate of change 
of the sfGFP production rate (kp) and the 
sfGFP dilution rate due to cell growth (kg) 
(Online Methods and Supplementary 
Fig. 10). We used least-squares minimi-
zation to parameterize the model against 
the experimental data sets (Supplementary Figs. 8 and 9 and 
Supplementary Table 1). To validate our modeling approach, 
we then simulated the response of both sensors to a series of step 
changes in the control signal that we had not previously tested in 
the calibration experiments (Fig. 2e,f). We then exposed bacterial 
cultures expressing each sensor to the same series of step changes, 
and measured the resulting sfGFP expression dynamics. For both 
sensors, our simulations predicted the experimental dynamics 
accurately and reproducibly over experiments performed on three 
separate days (Fig. 2e,f and Supplementary Table 2).

computational design of light control programs
We next investigated whether the model could be used to design 
time-varying light programs capable of driving gene expression 
to follow a user-defined reference signal. To this end, we wrote 
an in silico algorithm that accepts a reference gene expression  
time course and an initial light control program as inputs  
(Fig. 3a and Supplementary Fig. 11). The algorithm uses the 
dynamic model to simulate the gene expression response and 
iteratively optimizes the light control program until the error 
between the reference and the simulation is sufficiently small.  
We then tested the computationally optimized light control pro-
grams experimentally with bacteria grown in the LTA.

Programming gene expression transitions
First, we used our computational approach to dramatically reduce 
the time required to transition between two analog gene expres-
sion levels. The canonical strategy of applying a step increase in 
the concentration of an inducer resulted in relatively slow, expo-
nential dynamics with a fixed shape and timescale (Fig. 2c,d).  
To accelerate gene expression response dynamics, we simply 
defined references that are equivalent to the desired final expres-
sion level for cells beginning at a different, initial expression level. 
For example, we specified a time-zero target of 54 arbitrary sfGFP 

fluorescence units (a.u.) for CcaS-CcaR–expressing cells precon-
ditioned to the minimal sfGFP expression level of 17 a.u. The 
algorithm began by applying the maximal green intensity in order 
to quickly minimize the difference between the gene expression 
simulation and the reference (Fig. 3a). According to the model, 
this maximal step increase minimizes the gene expression switch-
ing time and increases sfGFP production to the maximal rate. 
As the simulated expression level approaches the reference, the 
algorithm decreases green light intensity to avoid unwanted over-
shooting. Finally, green intensity is increased to a final intermedi-
ate value over a series of smaller step changes (Fig. 3a).

Experimental tests of the above accelerator light program 
revealed that in vivo gene expression closely follows the simulation 
(Fig. 3a), thus dramatically reshaping response dynamics. Indeed, 
the transition to 90% of the target expression level was accelerated 
to 60 min, relative to 165 min for a step increase. We used this same 
approach to accelerate the CcaS-CcaR step transition from 17 to 
28, 39, 50, and 61 a.u., as well as the transition of Cph8-OmpR from 
13 to 30, 47, 64 and 81 a.u. (Fig. 3b,c). In all cases, the model pre-
dicted the accelerated response dynamics accurately, and the tran-
sition times were reduced by up to 83% (Supplementary Note 4  
and Supplementary Table 3). In addition, we used this strategy 
to accelerate gene expression decreases between many different 
analog expression levels (Supplementary Fig. 12).

Next we defined a set of linearly increasing reference signals 
with different slopes over a 180-min time window (Fig. 3a,d,e). 
The algorithm produced light control programs predicted to gen-
erate these linearized dynamics for each sensor. Once again, the 
experimental gene expression dynamics closely followed the refer-
ences with low error, for both sensors, over three different days 
(coefficient of determination R2 = 0.761–0.980; Supplementary 
Table 2). Our method also generated highly linear increases and 
decreases over all longer experimental trials examined, up to  
12 h (Supplementary Fig. 13).
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expression signals with a biological function 
generator. (a) Sinusoidal reference expression 
signal with labels indicating absolute 
expression levels of the CcaS-CcaR and  
Cph8-OmpR systems for b,e and c,f respectively. 
Timings used in the reference are shown in 
minutes (top). (b,c) Experimental response to 
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reference signal. (d–f) Complex waveform 
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described for Figure 2. RMSEREF compares the 
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Programming gene expression signals
A technology for programming tailor-made gene expression sig-
nals in vivo (i.e., a biological function generator) could transform 
our understanding of biological systems, in particular genetic 
circuits. We therefore investigated whether our approach could 
be used to generate user-defined protein waveforms. First we 
defined a 12-h sinusoidal reference that oscillates with a period of  
360 min and has an amplitude of 80% and offset of 50% of the total 
CcaS-CcaR and Cph8-OmpR output ranges. After one oscillation, 
the period and amplitude are halved, and two further oscillations 
occur (Fig. 4a). The algorithm produced oscillatory light-control 
programs predicted to drive each sensor to closely follow this 
reference, and bacteria exposed to these light programs produced 
well-defined gene expression sinusoids (Fig. 4b,c). For both sen-
sors, we observed no error propagation over the 12-h experiment, 
and sfGFP expression patterns quantitatively tracked the ampli-
tude, period and offset values for both of the sine waves specified 
in the reference with the same standard of accuracy, precision and 
reproducibility achieved for the accelerated and linear transitions 
(Supplementary Table 2).

To examine the degree of gene expression programmability ena-
bled by our method, we next challenged the algorithm with a 12-h 
reference composed of several different dynamics juxtaposed in 
series (Fig. 4d). For CcaS-CcaR, the reference begins with a linear 
increase from 17 to 56 a.u. over 150 min, followed by a 60-min  
hold, a 90-min linear decrease to 44 a.u. and a 60-min hold. Then 

the signal switches to a sinusoidal oscillation with a 300-min 
period, peak-to-peak amplitude of 50 a.u. and offset of 44 a.u. 
Finally, the signal holds constant for 60 min. The same reference 
is generated for the Cph8-OmpR system, with the same relative 
sfGFP values, scaled to the output range of the system (Fig. 4d). As 
before, the algorithm produced light control programs predicted 
to drive sfGFP dynamics that closely follow the reference. Despite 
the length and complexity, the light control program faithfully 
generated the desired waveform in vivo via both light sensors, 
with no loss in accuracy, precision or reproducibility compared 
to the other reference signals tested (Fig. 4e,f). The combined 
experimental r.m.s. error between the simulated and observed 
signals (RMSESIM) for all programming experiments was 5.0% 
for CcaS-CcaR (N = 53 trials) and 6.9% for Cph8-OmpR (N = 33 
trials) (Supplementary Table 2).

using the function generator to analyze gene circuits
To probe the utility of our biological function generator for char-
acterizing gene circuits (Fig. 5a), we next connected the CcaS-
CcaR system to the tetracycline repressor gene tetR, which we 
used to repress the PLtetO-1 promoter. This configuration results 
in a transcriptional ‘inverter’ circuit, wherein high levels of tran-
scriptional input from CcaS-CcaR result in low levels of transcrip-
tional output from PLtetO-1, and vice versa (Online Methods and 
Supplementary Fig. 1). To simultaneously monitor circuit input 
and output signals, we used a dual fluorescent reporter probe 

Figure 5 | Analysis of gene circuit signal 
processing using the biological function 
generator and dual-reporter oscilloscope 
system. (a) Top, a basic toolkit for 
characterizing signal propagation through 
electronic circuits consists of a function 
generator, which sends an input signal into a 
circuit of interest, and an oscilloscope, which 
uses two probes to measure the signal both 
before and after it has been transformed by 
the circuit. Bottom, an analogous toolkit 
for biological circuits. Here the CcaS-CcaR 
biological function generator sends a TetR 
input signal into the TetR/PLtetO-1 genetic 
inverter. A dual-reporter system, in which sfGFP 
is proportional to the input signal and mCherry 
is the output signal, is used to measure circuit 
signal-processing features. (b) Steady-state 
response of the inverter circuit. The markers 
indicate the measured means of the sfGFP and 
TetR (‘sfGFP/TetR’) and mCherry fluorescence 
distributions in response to different input light 
intensities. A least-squares fit (gray) is shown 
as the interquartile range of N = 500 Gaussian 
samplings of the parameter standard errors. 
(c,d) Two sinusoidal (c) and four linear (d) 
reference signals (black) were used to generate 
an sfGFP/TetR input signal (green dots), which 
is transformed by the inverter into a mCherry 
output signal (red dots). The sinusoidal 
reference signals have periods of 180 (left) and 
360 min (right), and the linear reference signals 
drive the system with four different slopes over 
180 min. Data are shown as previously described (Fig. 2e,f). Least-squares sine and linear fits (green and red shaded regions) were performed to the 
data following 120 min (c) and 24 min (d) so that the input signals could approach the reference. The fit regions are shown as the interquartile range of 
N = 500 simulations produced by sampling the fit parameter uncertainties.
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system wherein sfGFP is expressed from the same mRNA as 
TetR, and mCherry is expressed from PLtetO-1 (ref. 11) (Fig. 5a).  
Dual-channel flow cytometry measurements revealed that the 
addition of this inverter circuit had a negligible effect on the 
performance of the CcaS-CcaR system (Supplementary Note 5 
and Supplementary Table 1). Furthermore, we observed a highly 
linear (R2 = 0.991), inverse steady-state relationship between TetR 
and mCherry levels across the entire CcaS-CcaR output range 
(Fig. 5b, Supplementary Note 6 and Supplementary Table 4).

We next used our approach to produce sinusoidal and lin-
ear TetR input signals (Fig. 5c,d). A simple recalibration of the 
experimentally measured cell division rate and steady-state 
parameters in the dynamical model (Supplementary Note 5 and 
Supplementary Table 1) resulted in experimentally measured 
sfGFP and TetR dynamics that closely followed the reference 
sinusoids over the entire time course (Fig. 5c), demonstrating 
that the function generator is robust to these different genetic 
contexts. Dual-channel cytometry revealed that the circuit trans-
forms 180- and 360-min-period sinusoidal inputs into inverted 
output oscillations with the same periods (Fig. 5c). Both the input 
and output signals are well-fit by sine functions, as evidenced by 
nonlinear least-squares fits, revealing that the circuit performs 
a linear transformation wherein the input signal is inverted and 
offset by a time delay of 7.0 ± 5.4 min (Supplementary Note 7 
and Supplementary Table 5).

To further characterize the linearity of the inverter, we used 
the function generator to create the same four 180-min linear 
TetR signals that we previously demonstrated with sfGFP alone 
(Fig. 3d). The experimental sfGFP and TetR dynamics remained 
highly linear (Fig. 5d), albeit with a slight systematic discrepancy 
between the reference and in vivo signals (Supplementary Note 8).  
Despite this small difference, the dual probe approach allowed 
us to directly measure the in vivo transformation performed by 
the circuit. Fits again revealed that the circuit output is excep-
tionally linear regardless of the slope of the input (Fig. 5d and 
Supplementary Note 7).

discussion
Our overall approach is analogous to the standard electronic 
engineering technique of using a function generator to produce 
programmable voltage signals and an oscilloscope to monitor 
the signals before and after passing through a circuit of interest. 
In principle, our method could be used to study virtually any 
biological process that is dynamically affected by gene expres-
sion. We have demonstrated the utility of the approach by vary-
ing the expression level of the transcriptional repressor TetR 
linearly and sinusoidally and monitoring the protein expression 
output from the regulated promoter PLtetO-1. Despite numer-
ous inherent sources of nonlinearity in transcriptional regula-
tion, our experiments revealed an extended range over which 
PLtetO-1 responds linearly to TetR signals, with an approximate  
7-min delay.

Linear gene circuits are desirable for synthetic biology because 
they are relatively simple to characterize and model and are likely 
to perform predictably when connected to other genetic devices. 
One could construct amplifiers, attenuators, adders and adaptors 
that correct signal-strength mismatches14 between parts, as well as 
other advanced devices from linear gene circuits. Our function gen-
erator could also be combined with linear systems–identification  

methods from engineering, such as frequency analysis15, to con-
struct black-box models of natural or synthetic gene circuits. 
Several recent studies have used microfluidic devices to per-
form frequency analysis of gene circuits by creating extracellular 
signals of their native chemical effectors1–3,6. In contrast, our 
function generator uses a single input, light, to produce intra-
cellular signals of different proteins, yielding a simpler and more  
generalizable approach.

Experimentally parameterized dynamical models of gene cir-
cuits have major implications in basic science and engineering. 
For natural circuits, black-box models can be developed quickly 
using our approach, thereby accelerating the generation of new 
hypotheses. These models can then be elaborated into mecha-
nistic models in a rational or iterative manner, allowing rapid 
testing of the hypotheses. In particular, the high performance 
standard of our method is ideal for analyzing dynamic biological 
phenomena that are technically challenging to study16, such as 
cell cycles17, circadian clocks18, stress responses19,20 and differ-
entiation21–24. Our approach could also facilitate more detailed 
studies of ordered assembly in multiprotein complexes25,26 and 
of the dependence of gene circuit dynamics on host context27,28, 
and it should improve the predictability with which synthetic gene 
circuits can be composed into higher-order systems29. Finally, 
our approach could be used to dynamically program metabolic 
enzyme expression, allowing faster optimization of engineered 
pathways, especially those wherein the timing of expression 
affects efficiency, toxicity or yield30,31.

The two light-switchable TCSs used in this study have differ-
ent action spectra and can be independently controlled when 
expressed in the same cell9, making our approach amenable to 
multiplexing. The function-generator method should also be 
extensible to other phytochrome-based TCSs that respond from 
the UV to the near infrared32,33 and to light-switchable eukaryotic 
gene expression systems34,35. The performance features of our 
TCSs, such as basal (leaky) expression and output dynamic range, 
could be improved with further engineering, thereby extending 
the applicability of our method to more biological problems. In 
addition, continuous culture instruments could be developed to 
eliminate well-to-well variability in the LTA, decrease handling 
requirements and increase data collection throughput. The addi-
tion of on-line fluorescent protein detectors would also enable 
in silico feedback, wherein the light control program could be 
adjusted to compensate for any variability in protein expres-
sion levels not accounted for in the model. Finally, an arrayed 
micromirror technique has recently been combined with a 
eukaryotic optogenetic tool36 to produce user-defined signals 
of membrane localization of eukaryotic signaling proteins37 and 
reveal new properties of a signal transduction pathway38. Our 
method should be compatible with this approach, allowing gene 
circuit dynamics to be characterized with unprecedented single- 
cell resolution.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Addgene: pJT119b plasmid expressing CcaS 
and CcaR with sfGFP under the PcpcG2 promoter, 50551; pCph8 
plasmid expressing Cph8, 50552; pEO100c plasmid expressing 
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sfGFP under the PompC promoter, 50550; pBL4 plasmid express-
ing CcaS and CcaR with sfGFP-TetR under the PcpcG2 promoter, 
50548; pBL6 plasmid expressing mCherry under the PLtetO-1 
promoter, 50549.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Plasmids and strains. For the CcaS-CcaR system, plasmids 
pJT119b and pPLPCB(S) (Supplementary Fig. 1) were con-
structed previously9. For the Cph8-OmpR system, pCph8 (ref. 10) 
and pPLPCB(S) were constructed previously. Plasmid pEO100c 
(Supplementary Fig. 1) was constructed by swapping in a new 
synthetic ribosome binding site (RBS; TCATATATAAATAAAAT
AAGGTAGGTCAATAT) into pEO100b using the MEGAWHOP 
procedure39. The RBS was designed using the RBS Calculator40 
with a target translation rate of 100,000 a.u. pEO100b (not used 
for data collection in this study) was constructed using a two-
part Gibson assembly41 with pJT108 (ref. 42) as PCR template 
for the plasmid backbone and pJT119b as a PCR template for 
the sfGFP gene. Plasmid pBL4 (Supplementary Fig. 1) was con-
structed using a two-part Golden Gate assembly43 with pJT119b 
as PCR template for the backbone and a lab stock of the tetR gene 
as PCR template for the tetR assembly fragment. tetR was trans-
lated from a synthetic RBS (TCACACAGGAAACCTACTAG) 
sourced from part BBa_B0031 (http://parts.igem.org/). Plasmid 
pBL6 (Supplementary Fig. 1) was constructed using a two-part 
Golden Gate assembly43 with pEO100c (Supplementary Fig. 1) 
as PCR template for the backbone and a lab stock of the mCherry 
gene as PCR template for the mCherry assembly fragment, and 
PLtetO-1 (ref. 11) was embedded in the mCherry forward primer. 
Plasmid pPCBSE (graciously gifted by S. Schmidl) was used in 
place of pPLPCB(S) for the inverter circuit experiments (Fig. 5). 
pPCBSE was constructed using one-part Golden Gate assembly43 
with pPLPCB(S) as PCR template. The engineered promoter Plac/
ara-1, which drives ho1 and pcyA transcription on pPLPCB(S), 
was replaced by primer overhangs with the constitutive promoter 
J23108 (CTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGC, 
http://parts.igem.org/). The kanamycin-resistant envZ-deficient 
E. coli strain JT2 (ref. 9) was used for all experiments. Primers 
used during the construction of these plasmids have been listed 
(Supplementary Table 6). The plasmids and sequences are avail-
able at Addgene (http://www.addgene.org/).

Light tube array (LTA) design and construction. The LTA is 
constructed from layers of opaque foam and aluminum and a 
printed circuit board layer (Supplementary Figs. 2 and 3). The 
instrument provides an isolated optical environment for 64 
standard 14-mL culture tubes. Described from the bottom up, 
an aluminum base-plate is used to fasten the device to the plat-
form of a benchtop 37 °C shaking incubator (Thermo Fisher 
MaxQ4000). The next layer is a custom-designed printed circuit 
board (fabricated by Pad2Pad) containing red (Kingbright cat. 
#WP1503SRD), green (Kingbright cat. #WP7083ZGD), far-red 
(Epitex cat. L740-05AU) and blue (Vishay Semiconductors cat. 
#TLHB4400) LEDs, TLC5940 LED drivers (Texas Instruments), 
connections for signal-carrying wires, and traces to carry the elec-
trical signals between the components. The LEDs are elevated 
by nylon standoffs so that they can be positioned closer to the 
cultures tubes. A foam tube surrounds each set of LEDs to opti-
cally isolate the wells. The next aluminum layer compresses the 
foam tubes and serves as the top layer of the light-emitting section 
of the LTA. These three layers are fixed by seven screws, which 
penetrate through holes placed across their surfaces.

The next layer is a 1-inch-thick foam block with punched holes, 
allowing light to pass up to the tubes above (Supplementary Fig. 3).  

The thickness of this layer can be used to control the spacing 
between the LEDs and the bottom of the tubes, which can be used 
to modulate light intensity in the samples. The aluminum layer 
resting above has holes precisely milled to 13.6 mm, a diameter 
slightly less than the 16-mm diameter of the culture tubes, ensur-
ing that the tubes will stay in a fixed position during shaking.

The remaining seven layers of 1-inch and 0.5-inch foam with 
holes punched through serve as a tube rack (Supplementary  
Fig. 3). These layers hold the tubes in place and further serve 
to optically isolate the light environments of the wells from one 
another. The top layer is a 0.5-inch foam sheet without holes, used 
as a lid to block ambient room light. All of the layers are held in 
place at the corners by 2-inch-wide strips of 1/16-inch aluminum 
that have been bent lengthwise into a 90° angle.

Light intensity is controlled via a pulse width–modulated 
(PWM) signal generated by the LED drivers, each of which can 
control 16 LEDs. The PWM signals have a 12-bit resolution (4,096 
levels) and a full PWM cycle frequency of 500 Hz. To control the 
256 LEDs on the board, 16 TLC5940 devices are daisy chained. 
The signals to control the TLC5940s are provided by an Arduino 
microcontroller board located outside the incubator. A freely 
available, GPL-licensed library for the Arduino was used to drive 
the TLC5940s (https://code.google.com/p/tlc5940arduino/, writ-
ten by A. Leone). A small wrapper was written for this library 
to enable simple commands to be used to drive the LEDs in the 
LTA, requiring the user to specify only a row, column, color  
and intensity.

Light intensity calibrations. LED intensity measurements are 
performed using a calibrated fiber-optic spectrophotometer 
(Stellar-Net EPP2000 UVN-SR-25). The fiber-optic sensor is 
placed into a culture tube and placed level with the 1-mL marking 
on the tube. The fiber is held in position inside the tube by foam 
stuffing. This tube-sensor is placed into each LTA well, and the 
intensity of each LED is measured. The LED intensities are then 
corrected to compensate for variations. A diffuser layer (Rosco, 
Roscolux #116 Tough White Diffusion) is positioned just above 
the LEDs while the calibration measurements are performed.

The maximum intensity levels of the red and green LEDs used 
in this study are 1.05 W/m2 and 4.03 W/m2, respectively (meas-
ured without diffuser). These intensities are reached when the 
PWM value is set to its maximum of 4,095. If the PWM value is 
set to 0, the LEDs emit no light. For intermediate PWM values, 
a linear interpolation can be performed between the end points. 
The relationships between green and red intensities measured in 
W/m2 (Ig,W/m2 and Ir,W/m2) and intensities referenced by PWM 
value (Ig,PWM and Ir,PWM) are:

I I

I I

g W m g PWM

r W m r PWM
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, / ,
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.

2 4

2 4
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Optical control schemes. The control scheme chosen for the 
CcaS-CcaR system is to apply the maximum LTA red intensity 
of 1.05 W/m2 and to control gene expression by modulating 
green intensity between 0 and 4.03 W/m2. This results in a larger 
number of accessible analog states and also faster response kinet-
ics (Supplementary Note 3 and Supplementary Fig. 14). For 
the Cph8-OmpR system, we chose to modulate expression via 
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red light intensity alone, which simplifies the control scheme 
(Supplementary Note 3).

E. coli growth, light exposure and harvesting protocol. The 
protocol is performed over two consecutive days.

1. Late in the day, start a 37 °C, shaking overnight culture from 
a −80 °C stock in a tube containing 3 mL LB medium and the 
appropriate antibiotics (50 µg/mL kanamycin, 100 µg/mL spec-
tinomycin and 34 µg/mL chloramphenicol for the CcaS-CcaR 
system, and the same antibiotics plus 50 µg/mL ampicillin for 
the Cph8-OmpR system).

2. After the overnight culture has grown for 10–12 h, pre-
pare 200 mL M9 medium (151.58 mL autoclaved, distilled H2O,  
40 mL 5× M9 salts, 4 mL 10% casamino acids, 4 mL 20% glucose, 
400 µL 1 M MgSO4, 20 µL CaCl2). Add appropriate antibiotics 
to medium. Shake/stir the container to ensure the antibiotics are 
mixed well in the medium.

3. For dual-reporter inverter experiments, add anhydrotetracy-
cline (aTc) to bring the medium to a concentration of 40 ng/mL. 
(See “Note 1” at the end of the protocol.) Shake/stir the container 
to ensure the inducer is mixed well in the medium.

4. Measure the OD600 of the overnight culture.
5. Dilute the overnight culture into the M9 + antibiotics, bring-

ing the OD600 to 0.0001. (See “Note 2” at the end of the protocol.) 
Shake/stir the container to ensure the cells are mixed well in the 
medium.

6. Distribute 3 mL of inoculated medium into each of  
64 BD Falcon round-bottom 14-mL polypropylene test tubes  
(BD Biosciences catalog #352006).

7. Place tubes in the LTA and grow at 37 °C with shaking at  
250 r.p.m. for 8 h. Randomize the time points of the light program 
(Supplementary Note 1 and Supplementary Fig. 15) through-
out the 8 × 8 array to avoid reproduction of systematic errors 
due to slight variations in LED intensity. Randomize anew for  
each trial.

8. After 8 h of growth, harvest all test tubes by immediately 
transferring them into an ice-water bath. Wait 10 min for the cul-
tures to equilibrate to the cold temperature and for gene expres-
sion to stop.

9. Approximately 1.5 h before stopping the experimental cul-
tures, begin preparing a solution of phosphate-buffered saline 
(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM 
KH2PO4, pH to 7.4) + 500 µg/mL of the transcription inhibitor 
rifampicin (Rif, Tokyo Chemical Industry, cat. #R0079). Prepare 
at least 1 mL for each culture to be measured via flow cytometry. 
Rif dissolves slowly, so allow at least 45 min of stirring. Also at 
this time, begin preparing a 37 °C water bath.

10. Filter the dissolved solution of PBS + Rif through a  
0.22-µm 20-mL syringe filter.

11. Transfer 1 mL of the filtered PBS + Rif into one 5-mL 
cytometer tube per LTA culture sample, and chill tubes in a rack 
in an ice-water bath.

12. Transfer 50 µL of each chilled culture from step 7 into the 
chilled PBS + Rif solution.

13. Incubate the rack(s) of PBS + Rif + culture tubes in a 37 °C 
water bath for 1 h. Our measurements reveal that this allows sfGFP 
maturation to go to completion (Supplementary Note 2).

14. Transfer the rack(s) back into ice-water bath.

15. Wait 15 min, and then begin measuring each tube on a 
flow cytometer.

Note 1. To achieve a high degree of repeatability in the con-
centration of aTc, we created a master stock at 10,000× working 
concentration and divided this stock into aliquots containing 10% 
more volume than is required for a single run into individual tubes. 
These tubes were wrapped in foil and stored at −20 °C until use.

Note 2. The starting OD600 of 0.0001 was determined empiri-
cally to ensure that the cultures remain in exponential phase 
(final OD600 ~0.3) throughout the 8-h growth experiment. For 
12-h growth experiments, the starting density is decreased  
to 10−6. Over this range, the starting density has no impact on the 
response to light (Supplementary Fig. 16). Additionally, we have 
observed that increased expression of sfGFP results in a slight 
slowdown of growth (Supplementary Fig. 17), however we main-
tained the same inoculation density of cell cultures regardless of 
the light conditions they experienced.

Flow cytometry data acquisition and analysis. Cytometry 
acquisition was performed using a BD FACScan flow cytometer 
with the original laser system replaced by blue (488 nm, 30 mW) 
and yellow (561 nm, 50 mW) solid-state lasers (Cytek). The FL1 
(sfGFP) acquisition channel emission filter was also replaced 
with a 510/21-nm filter. The FL3 (mCherry) acquisition channel 
emission filter (650 nm long pass) is original to the instrument. 
The cytometer is calibrated using Spherotech cat. #RCP-30-5A 
beads approximately once per week. Acquisition is performed 
with typical count rates of 1,000–2,000 events/s. Approximately 
50,000 events are stored for each sample. A SSC threshold is used 
to eliminate instrument noise events that are clearly not due to 
cell scattering. The cytometer settings used for the two light- 
switchable systems have been listed (Supplementary Table 7).

After acquisition, the raw cytometry data are processed using 
custom Python scripts (Supplementary Software). First, the 
first 250 and last 100 events are removed from the data set to 
avoid transient errors introduced owing to uneven pressuriza-
tion of the sample tube. Then the highest and lowest measured 
histogram channel for each of the measured values (FSC, SSC, 
FL1 and FL3) are removed, as the events in these channels have 
an undetermined fluorescence value. Then a small elliptical gate 
centered at the median FSC and SSC values is used to isolate a 
uniformly sized population of cells. The elliptical gate was chosen 
to have a semi-major length of 64 channels and a semi-minor axis 
of 32 channels. The gate is tilted so that the angle between the 
FSC and semi-major axes is 28°, to align with the observed cell 
populations. The gating procedure leaves N = 2,000–5,000 events. 
Finally, a trim is performed on FL1 to remove a small number 
of apparent noncellular events. For the CcaS-CcaR system, the 
gate is set to a channel value of 127, whereas for the Cph8-OmpR 
system it is set to a value of 32.

The extracted data set is then used to calculate the statistics of 
the measured FL1 distribution. However, before the sample sta-
tistics are calculated, the extracted values are transformed from 
their measured log-scale channel units (10 bit, ranging from 0 
to 1,023) to linear-scale fluorescence units (ranging from 1 to 
9,910) using the transformation FL1LIN = 10(FL1_LOG/256). The 
arithmetic mean of the resulting histograms (Supplementary 
Fig. 18) is the primary statistic of interest and is the value used 
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to represent the population mean of each tube throughout this 
work. Finally, the measured autofluorescence E. coli JT2 value of 
9.583 a.u. is subtracted from the Cph8-OmpR system means. This 
blanking procedure is not possible for the CcaS-CcaR system, as 
the non-sfGFP-expressing cells were below the detection thresh-
old of the cytometer at the low-sensitivity FL1 gain setting used. 
Fluorescence measurements of mCherry for the dual-reporter 
inverter system required compensation for sfGFP emission bleed-
through into the FL3 detector (Supplementary Note 9).

Scatter in the steady-state transfer function. We used the steady-
state transfer characterization data to estimate the deviation from 
the steady-state transfer function model (Supplementary Figs. 4  
and 6) at different light input values. This measured scatter is 
used to assign uncertainties to individual data points in the model 
fitting process to reduce the possibility of individual data points 
having a disproportionate impact on the error minimization dur-
ing the fit routine. To determine the scatter of the points around 
the fit as a function of light intensity, we calculated a seven-point-
wide moving s.d. across the absolute value of the residuals to the 
transfer function fit of the data set. A second-order polynomial 
fit is used to provide an empirical relation between the input light 
intensity and observed sfGFP scatter (Supplementary Note 10).

Dynamical characterization and 2D ODE model. The observa-
tion of the three timescales in the step response motivated the 
construction of a two-dimensional ordinary differential equation 
(2D ODE) model.
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The two dynamic variables in this model are the production rate 
of sfGFP, p(t), and the sfGFP abundance, g(t). The dynamics of 
these two variables are determined by three model parameters 
each corresponding to each of the observed timescales. The time 
delay observed between a light input and a change in p(t) is given 
by τdelay, the rate of change of the p(t) is given by kp, and the dilu-
tion rate of the cells which governs the dynamics of g(t) is given 
by kg. For the CcaS-CcaR system, the kp parameter exhibits a 
dependence on the controlling light intensities Ir and Ig, which 
correspond to red and green light, respectively. The set point for 
the system c(t) is determined by mapping the light intensities at 
time t − τdelay through the steady-state transfer function.

To further explain the model, it is illustrative to consider its 
response to a step change in light intensity (Supplementary 
Fig. 6). First, the system is preconditioned to an initial set point  
cprecondition by the light intensities Ir,precondition and Ig,precondition. 
Then, at time t = 0, the light input levels change to Ir and Ig. 
This drives the set-point of the system c(Ir, Ig) to a new level 
that can be determined from the steady-state transfer function 
(Supplementary Figs. 4 and 6). The sfGFP production rate p(t) 
of the light-induced promoter begins to respond to the new c 
(after τdelay has elapsed) with first-order kinetics with rate kp. We 
allow that kp itself can depend on the light intensities Ir and Ig. The 
form of kp(Ir, Ig) was empirically determined for each system. For 

Cph8-OmpR, kp is simply a constant, whereas for the CcaS-CcaR 
system the functional form used is
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This form results in a rate that depends upon the whether the 
transition produces an increase or decrease in expression. For 
decreasing transitions, the rate is constant at kp,o. For increas-
ing transitions, the rate is given by kp,on, which is detailed in the 
second equation. For kp,on, the rate is held constant at kp,l for  
Ig less than a threshold intensity kp,k and increases linearly  
thereafter with intensity to a rate of kp,m when the light is at maxi-
mum intensity.

Continuing with the step-change response, the sfGFP fluores-
cence g(t) follows the production rate p(t) with first-order kinetics 
at a rate kg, and the system eventually comes to equilibrium with 
g(t) = c(Ir, Ig). All model parameter fit values, standard errors and 
units for the CcaS-CcaR, Cph8-OmpR and CcaS-CcaR + inverter 
systems have been listed (Supplementary Table 1).

Model fitting for CcaS-CcaR and Cph8-OmpR predictive 
models. We performed least-squares fitting with custom Python 
scripts (Supplementary Software) that utilize routines from a 
freely available Python library (Scipy.optimize.fmin). The fits 
were performed against data from multiple runs consisting of both 
single and multiple step functions to identify the optimal model 
parameter values for each system. The fits were performed across 
all of the calibration data sets simultaneously, using the scatter in 
the steady-state transfer function (see “Scatter in the steady-state 
transfer function” above) as an estimate for the uncertainty in the 
population mean for each data point (Supplementary Figs. 8  
and 9 and Supplementary Table 1). The fitting procedure 
allowed different steady-state a, b and τdelay values for each day, 
as we observed some day-to-day variation in these parameters 
(Supplementary Note 11). The predictive model uses the mean 
of these daily parameter fits. The remaining model parameters 
were fit globally to single values for the calibration data set. The 
uncertainties for the a, b and τdelay parameters for the CcaS-CcaR 
and Cph8-OmpR systems are the standard deviations of the daily 
fits for each of these parameters. The uncertainties for the remain-
ing parameters are computed as standard errors from the diagonal 
elements of the covariance matrix resulting from the fit.

Time-course simulations. To simulate the time-course responses 
of the light-switchable systems, we first calculate an analytical solu-
tion to the 2D ODE model. If we use t′ = t − tdelay, we find that
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The initial fluorescence and fluorescence production rate are 
given by g0 and p0 and are determined by the preconditioning light 
intensities. To simulate the response of the system to a sequence 
of step changes in light, we stitch together a series of individual 
step-change responses, evaluating each successive p0 and g0 at the 
point where the system begins to respond to the new step change. 
Thus, if tstep is the time at which a step function occurs, then we 
evaluate the new p0 and g0 at tstep + τdelay, ensuring the stitched 
solution will be continuous.

We then perform 500 simulations with model parameters sam-
pling the standard error of the fit. The sampling is performed on 
a Gaussian distribution of the parameter values with the mean set 
to the best-fit value and s.d. set to the standard error of the fit. 
The interquartile range of the expression levels for each minute of 
the simulations was used to determine the boundaries of the gray 
shaded envelopes in Figures 2–4. Model simulations are gener-
ated via custom Python scripts (Supplementary Software).

Precomputation of light control sequences. The algorithm uses 
model simulations of the light-switchable systems to compute a 
sequence of step changes in light intensity that will drive each 
system to follow a desired reference trajectory (Supplementary 
Fig. 11). The process is implemented using custom Python scripts 
(Supplementary Software). The algorithm accepts as inputs a 
list of time points at which the step changes should occur, a list 
of intensities allowed at each time point, the desired reference 
trajectory and an initial light control program from which to opti-
mize. Then an iterative procedure begins in which a simulation of 
the response to the current set of light step changes is calculated 
from the beginning of the first step change up to the end of the 
next step change plus a user-defined extra time horizon. The  
integrated square error between this simulation and the reference is 
then calculated over this same range. The algorithm then modifies  
the intensity of the first step change and repeats the error calcu-
lation given the new intensity. This process is repeated until the 
intensity that minimizes the error is identified. The algorithm 

then moves on to the next step change and repeats this intensity-
optimization process.

After the intensities of all step changes have been optimized, the 
integrated square error between the simulation and the reference 
is calculated for the entire time course. Following this calculation, 
the algorithm repeats the entire process of optimizing the inten-
sity at each step change, using the previously computed series of 
step changes as the initial input light sequence. After completing 
the procedure, the integrated error is again calculated across the 
entire time course. This process continues repeating until the dif-
ference between total integrated square errors for two successive 
runs is less than 0.5%, or until a user-defined maximum number 
of iterations have occurred. Typically, the error convergence 
threshold is satisfied after 3–5 iterations.

Error analysis and model validation. For function-generator 
experiments, r.m.s. errors (RMSEs) are calculated between the 
experimental data and the reference signal as well as between the 
experimental data and the model simulations (Supplementary 
Note 12). For model validation experiments, RMSEs are calculated 
between the experimental data and simulation. RMSE values are 
reported as a percentage of the entire output range of the corres-
ponding light-switchable system, allowing better appreciation 
of the magnitude of the error. RMSEs for all function-generator 
experiments have been calculated (Supplementary Table 1).
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